Centre Manifold Reduction for Quasilinear Discrete Systems

نویسنده

  • Guillaume James
چکیده

We study the dynamics of quasilinear mappings in Hilbert spaces in the neighbourhood of a fixed point. The linearized map is a closed unbounded operator and thus the initial value problem is ill-posed. Under suitable spectral assumptions, we show that all solutions staying in some neighbourhood of the fixed point lie on an invariant centre manifold. We apply this result to the study of time-periodic oscillations of a class of infinite one-dimensional Hamiltonian lattices. In this context, our approach provides a mathematically justified and corrected version of the rotating-wave approximation method. The equations are viewed as recurrence relations in the discrete space coordinate, where the fixed point corresponds to the oscillators at rest. These problems yield finite-dimensional centre manifolds and thus can be locally reduced to the study of finite-dimensional mappings. In particular, we consider the Fermi-Pasta-Ulam (FPU) lattice, which describes a chain of nonlinearly coupled particles. When the frequency of solutions is close to the highest normal mode frequency, the reduction yields a two-dimensional reversible mapping. For interaction potentials satisfying a hardening condition, the reduced mapping admits homoclinic orbits to 0 which correspond to FPU “breathers” (time-periodic and spatially localized oscillations).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

Evaluation of the Centre Manifold Method for Limit Cycle Calculations of a Nonlinear Structural Wing

In this study the centre manifold is applied for reduction and limit cycle calculation of a highly nonlinear structural aeroelastic wing. The limit cycle is arisen from structural nonlinearity due to the large deflection of the wing. Results obtained by different orders of centre manifolds are compared with those obtained by time marching method (fourth-order Runge-Kutta method). These comparis...

متن کامل

An Asymptotic and Numerical Description ofSelf - Similar Blow - up in

We study the blow-up behaviour of two reaction-diiusion problems with a quasilinear degenerate diiusion and a superlinear reaction. We show that in each case the blow-up is self-similar, in contrast to the linear diiusion limit of each in which the diiusion is only approximately self-similar. We then investigate the limit of the self-similar behaviour and describe the transition from a stable m...

متن کامل

Remarks on a Class of Quasilinear Elliptic Systems Involving the (p,q)-laplacian

We study the Nehari manifold for a class of quasilinear elliptic systems involving a pair of (p,q)-Laplacian operators and a parameter. We prove the existence of a nonnegative nonsemitrivial solution for the systems by discussing properties of the Nehari manifold, and so global bifurcation results are obtained. Thanks to Picone’s identity, we also prove a nonexistence result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003